

BINDT Aerospace Workshop - NDT for Metallic Airframe Components

UT TFM Inspection of LMDw Parts

Tom Bertenshaw | 20th April 2021

Uncontrolled data - The documents within this transmission contain NO technical data subject to the "UK Export Control Act 2002 or EU Dual-Use Regulation (Council Regulation (EC) No 428/2009), as amended"

UT TFM Inspection of LMDw Parts - Introduction

Laser Melt Deposition by wire (LMDw)

- For historical "subtractive" production processes, the requirement for inspection has always been the material providers' responsibility.
- LMDw is a new production process where the manufacturer will be responsible for the NDT inspection requirements for these parts
- > GKN has done a down selection of applicable NDT techniques, ultrasonic inspection has been identified as the most applicable technique.
- > Considerations:
 - Inspection part in as deposited state (pictured)
 - Inspection after machining

1.3 Competing Technologies

Radiographic Techniques

- These include, film radiography, digital radiography and X-ray CT
- Film and digital techniques cannot detect cracks so are discounted
- X-Ray CT (below) is a significant improvement of the above techniques. It has good resolution /sensitivity which reduces as the part size increases, so only suitable for smaller parts Geometry also effects sensitivity. However cost of equipment rules out using/purchasing equipment until it reduces

Laser Ultrasound

- > This is a non-contact inspection Technique
- Several modes of operation which have different pros/cons and costs associated
- > It has potential application in In-process NDE.
- Cost of equipment is high and there are very few companies that have adopted the technology

Eddy current Techniques

- This is a also non-contact inspection Technique
- Currently a manual technique. To be most effective the technique needs to be automated. There is research being done to look at automating eddy current arrays
- It has potential application in In-process NDE.
- Potential to defect defects in thin metallics parts only, so will have limited applications. Not suitable for LMDw parts.

LMDw geometries

Single wall depositionInspection from webInspection from base plate	Overhang depositionInspection from webInspection of overhang	
Angled wall deposition Inspection from web 	Sloped wall depositionInspection from webInspection from base plate	
 T-section deposition Inspection from web Inspection from base plate 	 Cruciform wall deposition Inspection from web Inspection from base plate 	
Double sided deposition Inspection from web 	 Tapered deposition Inspection from web Inspection from base plate 	

Test Pieces

> 2 test pieces were made for Initial TRL3 tests:

Calibration/sensitivity block

- Manufactured from Billet
- Includes 1.2mm and 0.8mm spherical and flat bottomed holes
- From 5mm to 45mm

TRL 3 tests

- > Test setup for TWI test:
 - PEAK LTPA (64:128)
 - Linked to computer running TWI Crystal software
 - Olympus probe (10MHz, 64 elements, 0.5mm pitch)
 - Olympus Glider Scanner

LMDw T-section test piece

- Manufactured by external company
- Max deposition 60mm

EXPORT CLASSIFICATION - NSR

Test Piece results

Test Piece results

Export Classification: PL9009.c.

UT TFM Inspection of LMDw Parts

Test Piece results

> T-section Test Piece LMD_013_004 - Inspection parallel to short axis

Small indications

EXPORT CLASSIFICATION - NSR

Test Piece results

> T-section Test Piece LMD_013_004 - Inspection parallel to long axis

X-ray CT: 2D slice of cal block

UT TFM Inspection of LMDw Parts

X-ray CT of Test samples

X-ray CT of cal block

- X-ray CT was used to check the hole depths on the calibration block.
- > They match the tolerances on the drawing

X-ray CT of T section Test piece

- Results don't quite stack up with the UT TFM results provided.
- Re-inspecting the T-section piece with our UT TFM setup would be required
- > We also need to consider cutting up the test piece to see what the indications shown by the UT are

20mm step: Flat Bottomed Holes

20mm step: Spherical Bottomed Holes

CT scan: T section Test piece

Next Steps

- New equipment setup for GKN to support the LMDw activities
- Manufacture more representative test pieces
- Conduct further tests and support LMDw Cell with inspection of parts as they are manufactured
- > TRL4 Review Nov/Dec 2021
- Training and Certification requirements review

Proprietary and confidential restrictions on title slide apply throughout this presentation

EXPORT CLASSIFICATION - NSR